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SUMMARY 
A simulation  of  planar  2D  flow  of  a  viscoelastic  fluid  employing  the  Leonov  constitutive  equation  has  been 
presented.  Triangular  finite  elements  with  lower-order  interpolations  have  been  employed  for  velocity  and 
pressure  as  well  as  the  extra  stress  tensor  arising  from  the  constitutive  equation. A generalized  Lesaint-Raviart 
method  has  been  used  for  an  upwind  discretization  of  the  material  derivative  of  the  extra  stress  tensor  in  the 
constitutive  equation.  The  upwind  scheme  has  been  further  strengthened  in our code  by  also  introducing  a  non- 
consistent  streamline  upwind  Petrov-Galerkin  method  to  modify  the  weighting  function  of  the  material 
derivative  term  in  the  variational  form  of  the  constitutive  equation. A variational  equation  for  configurational 
incompressibility  of  the  Leonov  model  has  also  been  satisfied  explicitly. 

The  corresponding  software  has  been  used  to  simulate  planar  2D  entrance  flow  for  a 4: 1  abrupt  contraction  up 
to  a  Deborah  number  of  670  (Weissenberg  number  of  6.71)  for  a  rubber  compound  using  a  three-mode  Leonov 
model.  The  predicted  entrance  loss  is  found  to  be  in  good  agreement  with  experimental  results  from  the 
literature.  Corresponding  comparisons  for  a  commercial-grade  polystyrene,  however,  indicate  that  the  predicted 
entrance  loss  is  low  by  a  factor  of  about  four,  indicating  a  need  for  further  investigation. 
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1 .  INTRODUCTION 

For numerical simulation of the flow of polymeric fluids, a purely viscous but shear-thinning 
rheological behaviour has been successfully used in many applications involving shear-dominated 
flows, such as in  the injection and compression moulding of polymers. However, in applications 
involving extensional flow, predictions from such a simple formulation can be quite different from 
the real flow. Owing to their viscoelastic nature, polymers accumulate significant recoverable strain. 
This recoverable strain is the main reason for the poor prediction of extension-dominated polymeric 
flows by a purely viscous formulation. One such flow involving significant extension, which has been 
used extensively as a test case in the literature, is entrance flow. Besides being a good test case, 
entrance flow is frequently encountered in polymer-processing applications. For instance, the runner 
and gate system in injection moulding and the die portion in extruders involve channels with a 
contraction and/or expansion in cross-sectional area. 
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To capture the viscoelastic behaviour of polymers, many different constitutive equations  have been 
proposed in  the literature. A good review  of  such  equations  can be  found in the book  by Larson.  The 
constitutive equation  given by Leonov2  has  been  used in the present  work.  This  equation  has  been 
employed by many  other  investigators= and  has been  found to  be capable of predicting complex 
polymeric flows. 

Numerical  simulation of viscoelastic flows  has been actively investigated by researchers for quite 
some time. A good  review on the subject is presented  by Keuning~.~ Many  of the numerical  schemes 
developed in the literature successhlly simulated viscoelastic flows  at low strain rates but failed to 
converge at higher strain rates of practical interest. Significant progress has been made in the last 
decade  towards identification of underlying  causes for early divergence of the simulation  and  towards 
development  of stable numerical techniques. Joseph et showed  that equations  governing two- 
dimensional  steady flow  of Maxwell fluids  have two imaginary characteristics and  that streamlines 
correspond to two real characteristics. Besides these four characteristics, the upper-convected  Maxwell 
model has two more characteristics associated  with the vorticity equation which, depending upon  the  sign 
of the determinant  of the Finger  tensor (det Z), can be  real (det Z > 0) or  imaginary (det Z 0). Dupret 
and  Marchal'  showed for the upper-convected  Maxwell fluid that if the Finger tensor is positive definite 
at the inlet boundaries,  then it will remain positive definite everywhere in the flow domain.  Thus the 
upper-convected  Maxwell  model is always evolutionary. For the Oldroyd-B fluid,  which has an 
additional Newtonian viscosity (or retardation time), Dupret and  Marchal' showed that the Finger tensor 
is always positive definite  and that neither change in type  nor loss of evolution  can occur. For the 
Leonov  model the Finger  tensor is positive definite  by definition. Leonov" showed that the Leonov 
model  based  on the rubber elasticity work potential is  globally evolutionary. 

In a  purely  viscous  incompressible flow the constitutive equation  can be used to eliminate the stress 
variable, leaving  only velocity and  pressure in the governing equations; however, such an explicit 
elimination of the stress tensor is typically not feasible in the case  of viscoelastic constitutive 
equations. For  the simulation of a  purely  viscous  incompressible flow in terms of a  velocity-pressure 
formulation  based  on the finite element  method, the velocity and pressure interpolations must satisfy 
the  Babuska-Brezzi compatibility condition.' ' , l 2  It was shown  by Fortin and  Pierre13 that if the space 
of  the velocity gradient is  a subset of the solution space  of the extra stress tensor, then the compatibility 
condition for the velocity-pressureetress  formulation is the same as the BabuskeBrezzi condition. 
However, the velocity gradient in the finite element  method is typically discontinuous across the 
element boundary and will  not  be a subset of the solution space  of the extra stress tensor if continuous 
interpolations are used for the extra stress. In order to approximate the compatibility  condition for the 
velocity-pressureetress  formulation,  Marchal  and C r ~ c h e t ' ~  discretized the velocity and  pressure 
only, leaving the extra stress tensor undiscretized in the variational equations. To satisfy the 
compatibility  condition  approximately,  Marchal  and  Crochet  divided  each quadrilateral element into 
n2 uniform  subelements,  expecting the condition to be approximated closely for large n. For 
Newtonian fluids, with n = 4 (16 subelements),  Marchal  and  Crochet  obtained results similar to those 
from the velocity-pressure  formulation. It was shown  by Fortin and Pierre13  that the error estimate for 
the mixed  method of Marchal  and  Crochet is of optimal order. c 

Since viscoelastic constitutive equations typically constitute a set of first-order hyperbolic 
equations, an  upwind  scheme is usually  required in order to obtain  a stable numerical  scheme. 
Various  upwind  schemes have been  proposed in the literature. Upadhyay  and  Isayev3 integrated the 
Leonov constitutive equation  along  streamlines to calculate the extra stress due to the recoverable 
portion  of the Finger tensor. Velocity  and  pressure in this scheme  were  determined by solving the 
Stokes flow equations  with the extra stress term treated as a body force. Upadhyay  and  Isayev 
presented results up to a  Deborah  number  of 50 for a 2 : 1 planar  entrance flow. The  scheme  has  been 
used  more recently by  Hulsen  and Zanden' and  Isayev  and  Huang6 for simulations  with  Giesekus 
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(axisymmetric)  and  Leonov (planar) models respectively, where results at higher  Deborah  numbers 
have  been  obtained for a 4 : 1 entrance flow (up to 256 by Hulsen  and  Zanden and 846 by Isayev  and 
Huang).  Recirculation  zones, which are found  in many such flows of interest, cannot be handled 
directly by this scheme.  Accordingly, different approaches  have  been  used by Upadhyay and Isayev3 
and Hulsen  and Zanden’ to circumvent this difficulty. As  an alternative, the streamline  upwind 
PetrovGalerkin (SUPG) method  developed by Brooks  and  Hughes” modifies the weighting  function 
in the variational form  of the constitutive equation so as to give  higher  weight to points on the upwind 
side of the finite element.  Marchal  and Crochet14  used a  non-consistent  streamline  upwind (SU) 
method in which the weighting  function in the variational form of the constitutive equation is 
modified for the convection  term only, whereas the weighting  function for other  terms in the 
constitutive equation is the same as that in the conventional  Galerkin  method.  Marchal  and  Crochet 
observed some oscillations in the velocity and stress field obtained  with the SUPG method, whereas 
the corresponding distributions obtained by using the SU  method were  found to be smooth. Luo and 
Tanner16 also confirmed superior  convergence properties of the SU method  over the conventional 
Galerkin as well as the SUPG method.  However, in a  one-dimensional  study  with  a sinusoidal forcing 
function, Tanner  and Jin17 found the SU scheme to  be less accurate than the SUPG as well as the 
conventional  Galerkin  method. 

Taking  advantage of the discontinuous discretization of the extra stress tensor, which is required to 
satisfy the compatibility condition, Fortin and  Fortin’* and Fortin and Zine’’  have  used the method  of 
Lesaint  and Raviart” for upwind discretization of the convection term. In this approach  an extra 
surface integral term is added in the variational form  of  the constitutive equation. This surface 
integral term  vanishes if the interpolation is continuous across the element  boundary;  however, for 
discontinuous discretization of the extra stress tensor, the surface integral term incorporates some 
upwinding in the variation of the convection term. The Lesaint-Raviart  method has also been used by 
Basombrio et and Baaijens,22 who  both used triangular finite elements instead of the 
quadrilateral element  employed by Fortin. 

In the present work a triangular finite element is used  with  quadratic  and linear (enriched by a 
constant) interpolations for velocity and  pressure respectively. This  combination of velocity and 
pressure interpolation not only satisfies the Babuska-Brezzi condition  but also guarantees local mass 
balance over each finite element.23  To satisfy the compatibility  condition for the velocity-pressure- 
stress formulation, we  have employed  a linear discontinuous (across the  finite element  boundaries) 
interpolation for the extra stress tensor. A  generalized Lesaint-Raviart (GLR)  method,  described in 
the next section, has been used for upwind discretization of  the convection term. Upwinding  has been 
further strengthened in our code  by also introducing  a  non-consistent  streamline upwind term. It is 
noted that, for additional stability of the numerical  scheme,  Rajagopalan et have  suggested 
separation  of the elastic and  viscous stresses (EVSS  method). Debae et also confirmed  that  such 
a split of elastic and viscous stresses imparts additional stability to the numerical  simulation of 
viscoelastic flows. Although this approach  has  not  been  incorporated into the present  numerics, it is 
possible that such  a  formulation  of the governing  equations  could further enhance the stability of the 
present  numerical  scheme.  This possibility should be investigated in future  work. 

2. GOVERNING EQUATIONS 

Assuming  a steady, inertia-free, isothermal, incompressible flow with no  body force, the conservation 
equations for momentum and mass are simplified  to 

V . C = O  in R, (1) 
V . 8 = 0  in R, (2) 
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where 5 is the stress tensor, ti is the velocity and SZ is the flow domain.  For the Leonov  model the 
stress is  given  by 

- 
5 = -p6 + 2 q m Z  + ?e, 

where p is the pressure, 3 is the unit tensor, qm is the second  Newtonian viscosity, 2 = 4 (VG + VGT) 
and 7, is the extra stress tensor due to the viscoelastic nature  of the fluid.  In the multimode  case the 
extra stress tensor is given by ?, = x k = l  ? R ,  where Ndenotes the number of modes  and ?R is the extra 
stress due to mode k in the viscoelastic constitutive equation. 

For planar flow with the Leonov  model  based  upon the rubber elasticity work potential and with 
strain hardening2  of the polymer  molecules neglected, the extra stress ?k is given by 

N 

where q k  and A k  are the viscosity and relaxation time  parameters respectively for mode k and the 
superscript k  denotes the upper-convected  material derivative defined as 

where D?,/Dt is the material derivative of ? k .  

3 ,  CONFIGURATIONAL 

The  Leonov  model,2 which was  deriyed from non-equilibrium  thermodynamics, has an additional 
constraint for the Finger tensor, 6 + ( A k / q k ) ? k .  Specifically, & in the Leonov  model represents 
the portion  of total strain which  will  be recovered if all the stresses are suddenly released. Since the 
density of  an  incompressible viscoelastic medium after unloading must  be the same as that before the 
deformation started, p = p. =pp, where p, p0 and pp are respectively the density at any instant, the 
density before the deformation started and the density after unloading.  Therefore,  besides 
trace(2) = 0, we  must also have  trace(Zp) = 0 (where Zp is the non-recoverable  portion  of Q, which 
implies 

detzk = 1, k =  1 , . . . , N .  (6) 

Equation (6), which was  considered self-evident by Leonov,2  was criticized by Giesekus26 as being 
unproved  from the point  of view  of the kinematics of randomly distributed polymer  molecules. 
However, Leonog7 later justified equation (6).  It is noted that equations (4) and (6) give  four linear 
equations for three independent  components  of &, namely the 1 1 , 2 2  and 1 2  ( = 2 1 )  components.  This 
appears  anomalous at  first glance. Furthermore, since we have N kinematic constraints (equation (6)) 
for the recoverable strain, the constitutive equation (4) should  determine the stress due to the 
recoverable strain only up to N additive constants, which are to be determined as part of the solution 
to the initialboundary  value  problem.  This  apparent  anomaly is resolved by noting'that the complete 
stress due  to the recoverable  portion of the strain is given in the Leonov  model by - 

c k = - P k d + ? k ,  k = l ,  . . . ,  N ,  (7) 

where ?k is governed by equation (4) and  the extra pressure P k  is to be determined  such that 
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Since the stress due to the non-recoverable  portion  of the strain is given by CP = -p8 + 2 ~ ~ 2 ,  where 
the pressure p is determined  from the incompressibility  condition  (equation (2)), then the total stress 
is given by 

As shown in the Appendix, for the Leonov constitutive equation (4), if the velocity field is 
divergence-free ?and det(Zk) is unity at the entrance, then it will remain unity throughout the  flow 
domain,  implying that pk = 0, k = 1, . . . , N ,  and we are left with  only one undetermined  constant p to 
be determined  from  equation (2). Nevertheless, in a  numerical  simulation using  the  finite element 
method, the divergence-free  condition  on the velocity field (equation (2)) is satisfied  only  in a 
variational sense  and  not at every  point in the flow domain.  In any simulation the incompressibility 
condition  can be particularly violated near singularities such as the entrant comer in an  entrance flow. 
Furthermore,  even if  det(Zk) = 1 at the entrance  nodes,  owing to the polynomial interpolation of Zk, 
det(Zk) will not  be unity  on the portion of the entrance  boundary  between the nodes.  Therefore, in a 
numerical simulation, Pk# 0. In the present work,  once ?, (k = 1, . . . , N )  has been  determined 
(equation (4)), equation (8) is used to determine Pk for each of the N modes. A linear discontinuous 
interpolation (same as the interpolation for the extra stress tensor) has been used for the extra 
pressure Pk. 

4. NUMERICAL SCHEME 

In order to obtain  a variational form of the viscoelastic flow problem, we need to  define the solution 
space for the velocity, pressure  and extra stress tensor. On the flow domain l2 the space of square- 
integrable functions is denoted by 

and the Sobolov space as 

H'(Q) = [ulu E L2(l2), v u  E (L2(n))2] (1 1) 

such that the solution space for the velocity is given by 

where vi is a  component of the vector 6 and Tu is the part of  the boundary where  the velocity Ui is 
given. The solution spaces for the pressure (Q), extra stress tensor ( W )  and extra pressure (S) are then 
given by 

where 4v is a  component of 4. 
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The variational form of the viscoelastic flow problem is: find (U", p ,  ?, pk) E V X Q X W X S such 
that 

((C?e + 2q,Z(C)): e@)) - @V ' G )  = (F * G ) s ,  v.; E V,, (1 6 )  
( q v  * C )  = 0, Vq E Q, (1 7) 

V$ E W ,  k =  1 ,..., N ,  ( 1  8) 

where ( e ) and ( - denote integration over R and respectively and a .  b and a : b represent scalar 
and tensor products respectively, with V. defined  by {Glvi E H ' ,  i = 1 or 2,  wi = 0 on ru}, 
Se = c:=:'=, C?k and ?denoting the traction on the boundary. 

For stability of the numerical scheme, the convection term in equation (18) requires upwind 
discretization. As mentioned earlier, the method of Lesaint and Raviad' has been used in this work 
to incorporate upwinding; this involves integrating the convection term by parts twice. In the first of 
the resulting two surface integrals, Fortin and Fortin'* used the following scheme for the stress values 
on the sides of the finite elements: 

?k = ?; on am-, ?k = i; on am+, (20) 

where m is the current element, am- and am+ are the portions of the  finite element boundary where 
fluid  is entering and leaving respectively and ?; and ?: are the values of the extra stress tensor on the 
outer and inner sides of the edge with respect to the current finite element. While determining the 
second surface integral, ik = S; is used everywhere on the element boundary. The method gives the 
following additional term in the variational form of the constitutive equation (18): 

where [ i k ]  = i; - ?; on the finite element boundary am and ri is the outward normal to the finite 
element boundary. 

In our work we started with the  Lesaint-Raviart method as described above. However, we found 
that the numerical stability of the scheme is further enhanced if modified as described below. 
Specifically, instead of using equation (20) in the first of the two surface integrals obtained from 
integration by parts, we  use  the following equation for the stress on the boundary of a finite element: 

where 

With the use of (22),  the surface integral term in (21) is modified to 

/&("(Q ' fi)[?k]: $)h, 
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where CI = ;(l - p). It is noted that the surface integral in (24) is performed on the complete element 
boundary, in contrast with (21) where the integral is performed only on the inflow portion of the 
boundary of the element. At the entrance of the  flow domain, .t is specified owing to the hyperbolic 
nature of the constitutive equation such that the surface integral term can be easily determined at  the 
entrance. At the exit of the  flow domain the surface integral in (24) vanishes if the flow is normal to 
the boundary (such that p =  1). The surface integral also vanishes at solid boundaries (since ti = 0) 
and where the flow is parallel to the boundary (e.g. along the axis of a symmetric flow domain, since 

As mentioned in Section 1, upwinding in the current numerical scheme has been further 
strengthened by introducing a non-consistent streamline upwind term in the variational form of the 
constitutive equation (18) in order to modify the weighting function of the convection term. The 
additional term is given by 

ti. ii = 0). 

where IC is an upwind parameter. It is noted that, in contrast with the non-consistent upwind scheme 
used here (in which the weighting function is modified for the convection term only), the weighting 
function in the SUPG method is modified for the complete constitutive equation. The modification of 
the weighting function in the SUPG method is equivalent to the addition of an artificial diffusion 
term, with the upwind parameter being equivalent to  an artificial diffusivity. For the one-dimensional 
case, by adding an appropriate amount of artificial diffusion such that the nodal values of the 
approximate solution are exact. Brooks and Hughes” derived a value of IC = lulh/2, where h is the 
uniform mesh size. As discussed by Brooks and Hughes, to avoid crosswind diffusion in the 2D case, 
the artificial diffusion should not be isotropic, such that the diffusivity should be a tensor. For the 
rectangular finite element shown in Figure 1, if the velocity is along axis 1, then it is obvious that the 
artificial diffusivity is 

IC=-[ uh1 2 0 1 0 0 ’  ] 
whereas 

.=-[ - V h 2  2 O 0 1  O ] 
if the velocity is along axis 2. If the velocity is along any other direction, the general form of the 
artificial diffusivity tensor is 2 = @ where is the unit vector in the direction of the velocity, 
@ denotes the dyadic product of two vectors and IC is the same as the upwind parameter in (25). 
However, the appropriate value of IC in this general case is not obvious. In particular, Marchal and 
Crochet14 and Brooks and Hughes” employed ad hoc generalizations of the one-dimensional 
analysis. For  the quadrilateral finite elements used by Marchal and CrochetI4 and Brooks and 
Hughes,” IC was defined in terms of the velocity at the centroid and the principal vectors of the finite 
element. Two different values were suggested by Brooks and Hughes,15 namely 

wher? n, = io . h, and ut = Go it, in which C,, is the velocity at the centroid of the finite element 
and h, and hi are the vectors along the two principal directions of the quadrilateral finite element, 
with magnitude equal to the size of the element along each respective direction. The latter of the two 
values for IC in equation (26) was used by Marchal and Crochet.14 As noted by Rao and Finlayson,28 
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: p=-+& X l ' U  

i + h1 4 
Figure 1. Co-ordinate  system,  velocity  components  and finite element  dimensions  for  defining  artificial  diffusivity  in  SUF'G 

method 

generalization of (26) to triangular elements is not obvious. In an attempt to approximate (26), Rao 
and Finlayson used two different expressions for IC. One of these two suggested expressions has been 
used by Chang and Yang29 even for quadrilateral elements. 

In this work,  in the local co-ordinate system (x', y'), with x' aligned along the velocity at every 
point inside a finite element (Figure 2), we have used the artificial diffusivity 

.=-[ I Ilfillh 2 0 1 0 0 '  ] 
where h is as shown in Figure 2,  for both a quadrilateral as well as a triangular element. In the global 
co-ordinate system (X, Y), the diffusivity is 

IC = - (i, 63 i,). - llfillh 
2 

Therefore, in (25),  IC = l/fiIlh/2, with h as defined in Figure 2.  It is noted that, in contrast with the 
approach followed in the literature,'4-'6,28329 in  the current work h is not a constant for a given finite 
element, such that, while performing the integration in (25),  an appropriate value for IC is determined 
by  the scheme described above at each quadrature point. 

5 .  ITERATION SCHEME 

Owing to the non-linear nature of the viscoelastic constitutive equation (4), it is solved iteratively. 
Two iteration schemes have typically been used in the literature. In the simpler approach the 
constitutive equation is linearized by using the NewtowRaphson method and the complete set of 

Y 
A 

Figure 2. Local  and  global  co-ordinate  systems for defining  artificial  diffusivity  for  (a)  quadrilateral  and (b) triangular  finite 
elements 
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equations (16H19) is solved simultaneously. Owing to its superior convergence rate, such a scheme 
has been used extensively in the literature, e.g. by Marchal and C r ~ c h e t ’ ~  and Rao and Finlayson.28 
However, simultaneous solution of the velocity, pressure and stress equations, which can easily be of 
the order of 10 000 equations, even with only one mode in the constitutive equation, makes the 
scheme computationally inefficient. Furthermore, owing to the non-linear nature of the constitutive 
equation, the matrix as well as the forcing vector for the simultaneous linear equations needs to be 
updated in every iteration. We started using this scheme in the present work but found it to be 
impractical when more than one mode is used in the constitutive equation. 

In contrast, the Picard iteration s ~ h e r n e ~ , ~ , ~ ~ ’ ~ ~ ’ ~ , ~ ’  solves the problem in two stages. Starting with 
an initial approximation to the velocity and stress fields, in the  first step the momentum and mass 
conservation equations are solved, treating the extra stress from the viscoelastic constitutive equation 
as a known body force. With known velocity field, the constitutive equation is then solved to update 
the extra stress tensor. The two steps are then repeated successively until convergence. Besides 
breaking the problem into two parts, this scheme is especially desirable for the viscoelastic flow 
problem for two reasons. First of all, since the momentum and mass conservation equations are 
linear, the matrix for the system of linear equations for the Stokes flow problem is formed and 
triangulated using LU decomposition only in the first iteration. In subsequent iterations, as the extra 
stress changes, only the forcing vector on the right-hand side of the linear equations changes, such 
that the solution requires only back substitution. Secondly, in the case of multiple modes in the 
constitutive equation, the equations for each mode are decoupled and can be solved separately in the 
Picard scheme. However, as noted by many researchers in the literature,3’5’6”8”9’21 such a scheme 
tends to have poor convergence characteristics. In order to stabilize the iteration scheme, Upadhyay 
and Isayev3 added an extra term qa(P - P-’) to the momentum equation, where b and P-’ are the 
strain rate tensors based upon the velocity field in the current and previous iterations respectively and 
qa can be viewed as an artificial viscosity. In all the simulations presented in Section 8, we have 
followed Upadhyay and Isayev, taking qa = x:=l q k ,  where l]k is the same as in (4). Furthermore, 30 
per cent underrelaxation has been used in successive iterations for velocity as well as the extra stress 
tensor. 

With known velocity field, the only non-linear term in the constitutive equation, $ ( & / q k ) ( ? k  . Tk), 
has been linearized by using the  Newton-Raphson method. Even though a discontinuous 
discretization has been used for the stress tensor, the equations for the stress variables on each 
finite element are coupled with the equations for the stress variables on  the neighbouring elements 
through the boundary integral term (24) arising from the  GLR method. In the present work the 
constitutive equation has been solved at the element level, all the elements being scanned repeatedly 
until convergence (Figure 3). In the multimode case the number of required iterations for the inner 
loop in Figure 3 has been found to increase with relaxation time, being greatest for the mode with the 
largest relaxation time. 

If U, = J(uiui) and z, = J(zi jz i j> (i, j = 1 or 2) are used to define the magnitude of velocity and 
stress at a point, then we have used the following criteria to define convergence: 

where 11 . 1 1  denotes the L2 norm, rf ( = 0.3) is the underrelaxation factor, where rf= 0 corresponds to 
straight relaxation, E, is the maximum error allowed and n denotes the iteration number for the outer 
loop in Figure 3. In the present work we started with E, = IO-* but the results obtained were found to 
be not fully converged. A maximum error of E, = was found to be sufficiently refined to give the 
converged results reported below. By using the Picard iteration scheme with the element-level 
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Velocity  and stress fields 
at  a  lower D e b o r a h  number 

Assemble  and  triangulate 

1 I Update  body  force I 

Back substitution  to 
compute V and p 

l I - - - -  - - - - -  
I 
I 
I l 

I Compute tk by solving 

I l ( 18) on each element 

Has converged 
l for fixed V and p? 

I 
l Compute pk by solving I 
I I (19) on eafh element I 
I 

I Final V, p and I 
Figure 3. Flow  diagram of algorithm  used  to  solve  viscoelastic  flow  equations  by  using  Picard  iteration  scheme  and  solving 
constitutive  equation at element level.  The  steps  inside  broken  rectangle  are  executed  separately  for each mode in the 

constitutive  equation 

solution of the constitutive equation, the calculations for velocity, pressure, extra stress tensor and 
extra pressure could be performed easily on the IRIS-INDIGO work station from Silicon Graphics, 
Inc. 

6. LEONOV MODEL PARAMETERS 

Two different materials have been used in this work to simulate flow in a 4 : 1 abrupt planar 
contraction. For PTT rubber at  100 "C we used the three-mode Leonov model as given by Isayev and 
Huang4: 

ylm = 6.4 Pa S ,  

ylk = 1.3 x lo5, 1.54 x lo4,  3.11 x lo2 Pa S ,  

;Ik = 6.3, 0.109, 0.0013 S .  
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It should be noted that Isayev and Huang used an extended Leonov model which includes a yield 
stress. However, they found that the yield stress has only a minor influence on the predicted entrance 
loss and the influence diminishes as the flow rate is increased. The entrance flow has also been 
simulated for polystyrene with two different Leonov model fits. For polystyrene (PS) the parameters 
used in the simulation based upon the Leonov model are as follows (at 210 "C): 

(a) two-mode fit 

(b) three-mode fit 

These values have been obtained by fitting steady shear viscosity data for a commercial-grade PS 
(Styron 615/Dow), using a simplex method3' to obtain the best fit.  The resulting fits with the 
experimental results for polystyrene are shown in Figure 4, which also shows a similar plot for the 
PTT rubber by Isayev and H ~ a n g . ~  It is noted that the predicted viscosity from the two-mode Leonov 
model starts to deviate from experimental results at a shear rate j~ of about 2.5 x IO3 S-', 
corresponding to a fully developed downstream wall shear stress of about 1 a25 x lo5 Pa for the PS 
material at 210 "C. On the other hand, the predictions from the three-mode model are valid up to a 
shear rate of 2 x lo4 s-l, corresponding to a wall shear stress of about 2 x lo5 Pa. Using the Leonov 
model parameters given above, the predicted variation in the primary normal stress coefficient 
t,bl N l / j 2 ,  with N1 being the  first normal stress difference, is shown in Figure 5. 

A Rubber (experimental) 
m PS (experimental) 10 

.i 6-5 
Figure 4. Experimental  and  Leonov  model fits for viscosity of rubber  and  polystyrene 
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Figure 5 .  Primary normal  stress  coefficient for rubber and polystyrene based  upon  Leonov  model  fits of steady shear viscosity 

7. POISEUILLE FLOW 

To verify the accuracy of the numerical scheme presented in Sections 4 and 5, the three-mode Leonov 
model parameters for polystyrene given in the last section were used to simulate a pressure-driven 
flow in a planar channel. To characterize the flow, a non-dimensional shear rate (Deborah number 
De) has been defined as 

3u 
b De = -Ao, 

where U is the mean velocity in the channel, b is the half-gap height of the channel and A0 is the 
characteristic relaxation time of the fluid at low shear rates, namely3 

(27) 

N c ?k’k 
A0 = k= 1 

N 

?cc + c ?k 
k= 1 

The zero-shear-rate relaxation time defined above is a convenient parameter for comparing the 
characteristic time of various polymers. However, it should be noted that the actual relaxation time 
decreases significantly at higher shear rate, a characteristic arising from the non-linearity of the 
Leonov model. The Weissenberg number We, which is an alternative measure of the elasticity of the 
flow, is defined as 

(29) 

where 212 is the shear stress in simple shear flow. The variation in We as a function of shear stress in 
simple shear flow is shown in Figure 6 and tabulated in Table I .  It is noted that We increases with 
shear stress in the valid range of data for  the two- and three-mode Leonov models, attaining its 
maximum value in the vicinity of the respective limits of the fits for PS in Figure 4 and then 
decreasing monotonically. The maximum values of We for the two- and three-mode fits of 
polystyrene are 3.2 and 6.1 respectively. The Weissenberg number also increases for the rubber 
compound over the range of experimental data presented by Isayev and Huange4 Even though the 
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Figure 6 .  Weissenberg  number  versus shear stress in simple  shear flow using  multimode  Leonov  model for rubber  and 

polystyrene 

curve in Figure 6 for the rubber  compound  is  shown  only in the range in which the experimental 
results were given: the curve for the rubber  compound attains a  maximum at a stress level beyond 
the range  of  shear stress in Figure 6 (namely  a  value  of  about 33.4 at a  shear stress of 7.8 x IO5  Pa) 
and  then  decreases  sharply as the shear stress increases further. 

Three  successively refined  finite element  meshes  shown in Figure 7 have  been used to check the 
convergence of the numerical predictions. Using the symmetry of the problem,  only the flow on one 
side of the axis of  symmetry has been simulated. Besides the symmetry  condition  along the axis and 
the no- slip condition  on the solid walls, the velocity and stresses for fully developed  channel flow3' 
have  been specified at the entrance, whereas fully developed  channel flow has  been  imposed  on the 
velocity alone at the exit. For the three-mode  Leonov  model for polystyrene at De = 100 the predicted 

Table I. Strain  rate,  shear  stress  and  Weissenberg  number  versus  Deborah  number  for  simple  shear  flow  in  case 
of (a)  PTT  rubber  at  100 "C and (b, c) polystyrene  at  210 "C 

(a)  PTT  rubber 

De 10 20 50 100 200 500 670 
i (S-') 2.2 4.4 13.1 35.2 83.5 194.7 249.0 
T (io5  Pa) 0.54 0.79 1.25 1.56 1.81 2.17 2.32 
We 1.53 1.67 2.30 3.43 4.81 6.29 6.7  1 

(b)  Polystyrene  with  two-mode  Leonov  model 

De 10  20  50  100  200  500  670 
Y 160.5 371.8 955.6 1729 3045 6607 7759 
z (io5  Pa) 0.46 0.61 0.8  1 1.03 1.39 2.35 2.66 
We 1.63 2.21 2.88 3.12 3.1  1 2.74 2.63 

(c)  Polystyrene  with  three-mode  Leonov  model 

De 10  20  50  100  200  300  453 
i @-l) 143.0 313.2 777.0 1574 3443 5400 8181 
7 (io5  Pa) 0.43 0.56 0.78 1 .oo 1.25 1.40 1.57 
We 1.63 2.12 2.69 3.22 4.06 4.64 5.18 
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- .  . , . 

Figure 7. Successively  refined  fmite element meshes  used for simulating  planar  flow in a channel: (a)  mesh A; (b)  mesh  B;  (c) 
mesh C. The  upper  boundary  corresponds  to  the  solid  wall  and  the  lower  boundary to the axis of symmetry 

velocity profiles across the planar channel obtained by using the numerical scheme described in 
Sections 4 and 5 are shown in Figure 8. For all three finite element meshes in Figure 7 the predicted 
velocity profile agrees well with the theoretical velocity profile. The numerical predictions obtained 
by using the SU scheme in conjunction with the GLR method are in excellent agreement with those 
obtained by using the GLR method alone. In addition, the predicted pressure gradient also agrees well 
with the theoretical value, with less than 1 per cent error for all three meshes. Figures 9(a) and 9(b) 
show the first normal stress difference and the extra shear stress respectively across the channel. The 
predicted stresses agree well with the theoretical values for the three-mode Leonov model. Even for 
the extra stress tensor, addition of the SU term (equation (25) )  has no significant effect on the 
accuracy of the predictions. However, as will be seen in the next section, the SU term significantly 
improves the stability of  the numerical scheme. 

8. FOUR-TO-ONE ENTRANCE FLOW 

The numerical scheme presented in Sections 4 and 5 has also been applied to a planar 4 : 1 abrupt 
contraction, which has been extensively used as a benchmark test in the literature. The dimensions of 
the  flow domain and the three successively refined finite element meshes used are shown in Figures 

1.2 i 
0.9 t 

Mcsh B, without SU 
Mesh B. with SU 

0.2 Mesh C. without SU 
W McshC,withSU 

0.0 0.2 0.4 0.6 0.8 1.0 

x2 l b 

Figure 8. Velocity  distribution  across planar channel for three-mode  Leonov  model for polystyrene  at De = 100. Finite element 
meshes  A,  B  and C are  shown in Figure 7. Results are essentially  invariant in the .xl-direction 
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Figure 9. (a)  First  normal  stress  difference  and  (b)  extra  shear  stress  across  channel for three-mode  Leonov  model for 
polystyrene  at De = 100. The  zero-shear-rate  viscosity  is qo = qm + Ck=] qk N 

10 and  11 respectively. Besides the symmetry  condition  along the axis and the no-slip condition on 
the solid walls, the velocity and stresses for fully developed  channel flow have  been specified at the 
entrance, whereas fully developed  channel flow has  been  imposed  on the velocity alone at the exit. To 
define the Deborah  number for a 4 : 1  entrance flow, the mean velocity and the half-gap  height of the 
downstream  channel  have  been  used in equation (27). 

A quantity of prime interest in this study is the extra pressure  drop (i.e. entrance loss) due to the 
abrupt contraction. It is noted that for fully developed  channel flow of the Leonov  model, 
p *   = p  - 222 (and not p )  is constant  across  a cross-section, where 1  denotes the flow direction and 2 
the transverse direction. A flush-mounted  pressure  transducer on the wall will measurep*. In order to 
be able to compare the predictions with  experimental results, the entrance loss is defined in terms of 
p* as 

where Ap* is the total calculated drop in p* in the entrance flow, p e  is the extra pressure  drop in the 
entrance flow, Ap, and Ap2 are the pressure  drop for fully developed flow in the entry and exit 
channels respectively and ap2 is the magnitude  of the fully developed axial pressure gradient in the 
exit channel. 

Figure 10. Dimensions of flow  domain  used for simulating  flow  with 4 : 1 abrupt  planar  contraction 
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Figure 1 1 .  Successively  refined  finite  element  meshes  ((a)  mesh A; (b) mesh B; (c)  mesh C) in vicinity of entrant  comer  (top) 
and  over  more  extension  region  (bottom)  used for simulating  planar flow with 4 : 1 abrupt  contraction.  The  three  equal-sized 
isosceles  right  triangles  adjacent  to the entrant  comer  have  their  shorter  sides  equal to 0.0946,0,057b and 0.039b for meshes A, 
B  and C respectively.  Beyond the portion of the flow domain  shown in the bottom  parts, the finite  element  length  along  the flow 
direction  continues to increase  in  the  upstream and downstream  sections,  becoming 3.86,  2.9b and 2.2b near  the  entrance for 

meshes A, B  and C respectively  and  becoming  correspondingly &lb,  6.lb and 4.7b near  the  exit 
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Figure 11. (continued) 

With the use  of the S U  scheme in combination  with the GLR method, for mesh C the results 
converged up  to De = 670 for the rubber  compound  and up to De = 600 and 453 for polystyrene with 
two  and three modes respectively. The  simulation started to diverge at much  smaller  Deborah  number 
if the SU scheme  was  not used. With the GLR method alone, the results converged up to De = 92 for 
the rubber  compound  and up to De=67 and 20 for polystyrene  with two and three modes 
respectively. 

For the three successively refined meshes in Figure 1 1 ,  velocity and  pressure variations along the 
centreline for the flow of the rubber  compound at De = 200 are shown in Figures 12 and 13 
respectively. The velocity variation obtained by  using the coarse  mesh (A) shows slight fluctuations, 
whereas the two  finer meshes (B and C) give  smooth  velocity variation along the centreline. The 
excellent agreement  between the velocity and  pressure distributions obtained by using  meshes B and 
C also confirms convergence  with respect to mesh refinement. To  examine the effect of the SU 
scheme  on the accuracy  of the numerical predictions, Figures 14 and 15 compare the velocity and 
pressure variations respectively along the centreline for the flow of PTT rubber at De = 50. The 
excellent agreement  between the numerical predictions with  and  without the SU scheme  shows that 
the SU scheme  improves the stability of the numerical  scheme  without any significant adverse effect 
on the accuracy  of the numerical predictions. 

Figure 16 shows the centreline velocity for the 4 : 1 entrance flow for the rubber  compound  and 
polystyrene at various De. As expected, as the flow elasticity is increased, the overshoot in the 
centreline velocity near the entrance  plane increases and  a  longer distance is required to reach  a fully 
developed flow in the downstream  channel.  For the maximum De reached in this work, the flow  was 
found to become fully developed significantly before the downstream exit x l / b  = 60 is reached.  For 
rubber  (Figure 16(a)) as well as polystyrene  (Figure 16(b)) the asymptotic  downstream centreline 
velocity decreases  with  increasing flow rate (i.e. De), reflecting an increased  shear thinning. 
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Figure 12. Centreline  velocity for 4: 1 abrupt  contraction at De= 100 for rubber  compound  with  three-mode  Leonov  model; 
x l / b  = 0 at abrupt  contraction 
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Figure 13. Pressure  along  centreline of 4 : 1 contraction  at De= 100 for rubber  compound  with  three-mode  Leonov  model 
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Figure 14. Centreline  velocity for 4 : 1 contraction at De = 50 for rubber  compound with and  without  streamline  upwinding 
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Figure 15. Pressure  along  centreline of 4 : 1 coontraction at De = 50 for rubber  compound with and  without  streamline 
upwinding 
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Figure  16.  Centreline  velocity  for 4 : 1 abrupt  planar  contraction  at  various  Deborah  numbers  for  (a)  rubber  and (b) polystyrene 
with  three-mode  Leonov  model; x l / b  = 0 at  abrupt  contraction 
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To depict the increase in the recirculation zone  with flow rate, unit vectors  along the direction of 
velocity at various  Deborah  numbers are shown in Figures  17  and 18 for the rubber  and  polystyrene 
respectively. As expected, the recirculation region grows appreciably  with De. 

For  the planar 4 : 1 entrance flow  of  the rubber  compound, the total pressure  drop  between 
x l / b  = -20 and 20 (b  = 1 mm) was  experimentally  measured by Isayev  and H ~ a n g . ~ , ~ ~  A comparison 
between their experimental results and the corresponding  numerical predictions from the present 
work is presented in Figure 19. For the range  of flow rate over  which the current numerical results 
converged, the numerical predictions agree  well  with the experimental values. As a  point of 
reference, Figure  19 also shows  the  pressure  drop  based upon the calculated upstream  and 
downstream fully developed  pressure gradients multiplied by the respective lengths of each  channel 
section. 

Figure 17. Recirculation  in 4 : l abrupt  planar  contraction  for  PTT  rubber  compound  at De = (a) 10, (b) 100 and (c) 650; mows 
indicate velocity direction 
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Figure 18. Recirculation in 4 : l abrupt  planar contraction for polystyrene  (three-mode  fit) at De = (a) 10, @) 100 and (c) 450; 
arrows indicate  velocity  direction 

The  predicted  extra pressure loss for polystyrene is shown in Figure 20, where comparison is made 
with  an  experimental  correlation based33 upon cumulative  data in the  literature for commercial-grade 
polystyrenes. Unfortunately, it is seen that the  predictions  are significantly smaller than the 
experimental  correlation, even allowing a 100 per cent scatter in the  underlying  cumulative  data.33 It 
should be noted that the  latter  data  include  both  axisymmetric  (from  capillary  rheometer) and planar 
(from slit  rheometer) measurements with no systematic  difference  between the two cases.  Further, 
since  each  data  typically correspond to  a  contraction  ratio much larger than 4 : 1,  we have run our 
simulation also for a 10 : 1  planar  contraction. As indicated  in  Figure 20, the increased  contraction 
ratio  does  increase the predicted  juncture  loss,  as would be expected, but it  still  lies significantly 
below the experimental  correlation. 
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Figure 19. and predicted (present  work) total pressure  drop  between x l / b  = - 20 and 20 for 4 : 1 abrupt 
planar entrance flow of rubber compound 

As a further check on the predicted  results in Figure 20, we have generated  a  different set of 
Leonov model constants by fitting dynamic rather than steady  shear data. Specifically, we have fitted 
the dynamic  loss and storage modulus data of Pfandl et al.34 for  a  different commercial-grade PS. 
However, the resulting  predictions for the 4 :  1 planar contraction  are  essentially unchanged from 
those presented in Figure 20. 

Faced with the significant discrepancy between the simulated and experimental results in Figure 
20, we might be led  to question the accuracy of the Leonov constitutive equation in the present 
application.  In this regard it might be noted that L a r ~ o n ~ ~  has  indicated that the Leonov model gives 

h 

g 
a" 

T~ (Pa) 

Figure 20. Predicted  extra  pressure loss for 4 : 1 planar  abrupt contraction for polystyrene based on two- and three-mode 
Leonov  models.  The experimental correlation33 corresponds  to cumulative data in the literature for commercial-grade 

polystyrenes, as discussed  further in the text 
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qualitative but not quantitative predictions under elongational flow conditions. On the other hand, 
Upadhyay and Isayev3336,37 have shown by extensive comparisons with experimental data that the 
Leonov model does have reasonable predictive capabilities under elongational or combined 
shear/elongational situations. Accordingly, the present discrepancy indicated in Figure 20 remains 
unexplained and awaits further work in the area. 

In closing this section, it should be noted that a marching in Deborah number was required in order 
to obtain convergence at higher Deborah number. The Deborah number step ranged from 10 to 100. 
For example, for the three-mode Leonov model for the rubber compound, when the Deborah number 
for the 4 : 1 abrupt contraction was increased from 100 to 200, 137 iterations were required in the 
outer loop of Figure 3 with about 32, 11 and 4 iterations required in the inner loop for the first, second 
and third modes respectively. The complete calculation, including all the iterations in the inner and 
outer loops, required 55.43 min of computation time on the IRIS-INDIGO with a total number of 866 
elements, 1374 vertex nodes and 509 mid-side nodes, corresponding to mesh C in Figure 11. 

9. CONCLUSIONS 

An efficient algorithm for simulating planar viscoelastic flows has been developed. The excellent 
efficiency of the algorithm is attributed to an element-level solution of the constitutive equation along 
with a Picard iteration scheme. The corresponding software, employing the constitutive equation of 
Leonov, has been used to simulate the flow of two different polymers in channels with abrupt 
contractions. The numerical simulation converged up to a Weissenberg number of 6.71 for a rubber 
and up to 5.18 for a commercial-grade polystyrene. The predicted entrance loss is in reasonable 
agreement with experimental results for the rubber but considerably below those for the polystyrene, 
indicating a need for further investigation. 

ACKNOWLEDGEMENTS 

The major portion of this work has been supported by the industrial consortium of the Cornell 
Injection Molding Program (CIMP). We would like to thank Professor J. T. Jenkins (Theoretical and 
Applied Mechanics Department, Cornell University) for his helpful discussions. Parts of the 
calculations were performed on the Cornell National Supercomputer Facility, a resource of the 
Cornell Theory Center which receives major funding from the National Science Foundation and New 
York State. 

APPENDIX: PROOF OF det(ck) = 1 CONDITION IN PLANAR LEONOV MODEL 

Ignoring the subscript k, the material derivative of the determinant of the Finger tensor for each mode 
of the Leonov model is given by 

D -  - d e t ( c ) = ~ ~ ~ - + c ~ ~ - -  DC22  DC11  DC1 2 
Dt Dt Dt 2c12 * 
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From the constitutive  equation (4), material  derivatives of the three components of  the Finger tensor 
are 

-- 
Dt (33) 

where viJ = avi/axj, i, j = 1 or 2. The  incompressibility  constraint  (equation (2)) has also been used 
to obtain equation (33). Using equations (31)-(34) along with the incompressibility  constraint and the 
condition  det(ck) = 1, it  can be easily shown that 

Hence, if det(ck) = 1 at the entrance 
everywhere in the flow domain. 

and the flow field is divergence-free, then det(ck) = 1 
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